Product of commuting nonnegative elements is nonnnegative #
theorem
CFC.sqrt_eq_cfcₙ_real_sqrt
{A : Type u_1}
[PartialOrder A]
[NonUnitalRing A]
[StarRing A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[TopologicalSpace A]
[T2Space A]
[IsTopologicalRing A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
(ha : 0 ≤ a := by cfc_tac)
:
theorem
Commute.mul_nonneg
{A : Type u_1}
[NonUnitalCStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{a b : A}
(hab : Commute a b)
(ha : 0 ≤ a := by cfc_tac)
(hb : 0 ≤ b := by cfc_tac)
:
theorem
CStarAlgebra.prod_nonneg_of_commute
{A : Type u_1}
[CStarAlgebra A]
[PartialOrder A]
[StarOrderedRing A]
{l : List A}
(hl_nonneg : ∀ x ∈ l, 0 ≤ x)
(hl_comm : ∀ x ∈ l, ∀ y ∈ l, Commute x y)
: