missing lemmas about topological star algebras #
theorem
Set.isClosed_centralizer
{M : Type u_1}
(s : Set M)
[Mul M]
[TopologicalSpace M]
[ContinuousMul M]
[T2Space M]
:
theorem
NonUnitalStarAlgHom.range_eq_map_top
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[CommSemiring R]
[StarRing R]
[NonUnitalSemiring A]
[Module R A]
[IsScalarTower R A A]
[SMulCommClass R A A]
[StarRing A]
[StarModule R A]
[NonUnitalNonAssocSemiring B]
[Module R B]
[Star B]
[FunLike F A B]
[NonUnitalAlgHomClass F R A B]
[StarHomClass F A B]
(φ : F)
:
theorem
StarAlgebra.topologicalClosure_adjoin_le_centralizer_centralizer
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[Semiring A]
[Algebra R A]
[StarRing A]
[StarModule R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
[ContinuousStar A]
[T2Space A]
(s : Set A)
:
theorem
StarAlgebra.elemental.le_centralizer_centralizer
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[Semiring A]
[Algebra R A]
[StarRing A]
[StarModule R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
[ContinuousStar A]
[T2Space A]
(x : A)
:
theorem
NonUnitalSubalgebra.map_topologicalClosure_le
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[CommSemiring R]
[TopologicalSpace A]
[NonUnitalSemiring A]
[Module R A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
[TopologicalSpace B]
[NonUnitalSemiring B]
[Module R B]
[IsTopologicalSemiring B]
[ContinuousConstSMul R B]
[FunLike F A B]
[NonUnitalAlgHomClass F R A B]
(s : NonUnitalSubalgebra R A)
(φ : F)
(hφ : Continuous ⇑φ)
:
theorem
NonUnitalSubalgebra.topologicalClosure_map_le
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[CommSemiring R]
[TopologicalSpace A]
[NonUnitalSemiring A]
[Module R A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
[TopologicalSpace B]
[NonUnitalSemiring B]
[Module R B]
[IsTopologicalSemiring B]
[ContinuousConstSMul R B]
[FunLike F A B]
[NonUnitalAlgHomClass F R A B]
(s : NonUnitalSubalgebra R A)
(φ : F)
(hφ : IsClosedMap ⇑φ)
:
theorem
NonUnitalSubalgebra.topologicalClosure_map
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[CommSemiring R]
[TopologicalSpace A]
[NonUnitalSemiring A]
[Module R A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
[TopologicalSpace B]
[NonUnitalSemiring B]
[Module R B]
[IsTopologicalSemiring B]
[ContinuousConstSMul R B]
[FunLike F A B]
[NonUnitalAlgHomClass F R A B]
(s : NonUnitalSubalgebra R A)
(φ : F)
(hφ : Topology.IsClosedEmbedding ⇑φ)
:
theorem
NonUnitalStarSubalgebra.map_topologicalClosure_le
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[CommSemiring R]
[TopologicalSpace A]
[Star A]
[NonUnitalSemiring A]
[Module R A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
[ContinuousStar A]
[TopologicalSpace B]
[Star B]
[NonUnitalSemiring B]
[Module R B]
[IsTopologicalSemiring B]
[ContinuousConstSMul R B]
[ContinuousStar B]
[FunLike F A B]
[NonUnitalAlgHomClass F R A B]
[StarHomClass F A B]
(s : NonUnitalStarSubalgebra R A)
(φ : F)
(hφ : Continuous ⇑φ)
:
theorem
NonUnitalStarSubalgebra.topologicalClosure_map_le
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[CommSemiring R]
[TopologicalSpace A]
[Star A]
[NonUnitalSemiring A]
[Module R A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
[ContinuousStar A]
[TopologicalSpace B]
[Star B]
[NonUnitalSemiring B]
[Module R B]
[IsTopologicalSemiring B]
[ContinuousConstSMul R B]
[ContinuousStar B]
[FunLike F A B]
[NonUnitalAlgHomClass F R A B]
[StarHomClass F A B]
(s : NonUnitalStarSubalgebra R A)
(φ : F)
(hφ : IsClosedMap ⇑φ)
:
theorem
NonUnitalStarSubalgebra.topologicalClosure_map
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[CommSemiring R]
[TopologicalSpace A]
[Star A]
[NonUnitalSemiring A]
[Module R A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
[ContinuousStar A]
[TopologicalSpace B]
[Star B]
[NonUnitalSemiring B]
[Module R B]
[IsTopologicalSemiring B]
[ContinuousConstSMul R B]
[ContinuousStar B]
[FunLike F A B]
[NonUnitalAlgHomClass F R A B]
[StarHomClass F A B]
(s : NonUnitalStarSubalgebra R A)
(φ : F)
(hφ : Topology.IsClosedEmbedding ⇑φ)
:
theorem
NonUnitalStarAlgebra.topologicalClosure_adjoin_le_centralizer_centralizer
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[NonUnitalSemiring A]
[Module R A]
[IsScalarTower R A A]
[SMulCommClass R A A]
[StarRing A]
[StarModule R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
[ContinuousStar A]
[T2Space A]
[ContinuousConstSMul R A]
(s : Set A)
:
theorem
NonUnitalStarAlgebra.elemental.le_centralizer_centralizer
(R : Type u_1)
{A : Type u_2}
[CommSemiring R]
[StarRing R]
[NonUnitalSemiring A]
[Module R A]
[IsScalarTower R A A]
[SMulCommClass R A A]
[StarRing A]
[StarModule R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
[ContinuousStar A]
[T2Space A]
[ContinuousConstSMul R A]
(x : A)
: