Documentation

Mathlib.Topology.Order.DenselyOrdered

Order topology on a densely ordered set #

theorem closure_Ioi' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (h : (Set.Ioi a).Nonempty) :

The closure of the interval (a, +∞) is the closed interval [a, +∞), unless a is a top element.

@[simp]
theorem closure_Ioi {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] (a : α) [NoMaxOrder α] :

The closure of the interval (a, +∞) is the closed interval [a, +∞).

theorem closure_Iio' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (h : (Set.Iio a).Nonempty) :

The closure of the interval (-∞, a) is the closed interval (-∞, a], unless a is a bottom element.

@[simp]
theorem closure_Iio {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] (a : α) [NoMinOrder α] :

The closure of the interval (-∞, a) is the interval (-∞, a].

@[simp]
theorem closure_Ioo {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (hab : a b) :

The closure of the open interval (a, b) is the closed interval [a, b].

@[simp]
theorem closure_uIoo {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (hab : a b) :
@[simp]
theorem closure_Ioc {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (hab : a b) :

The closure of the interval (a, b] is the closed interval [a, b].

@[simp]
theorem closure_uIoc {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (hab : a b) :
@[simp]
theorem closure_Ico {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (hab : a b) :

The closure of the interval [a, b) is the closed interval [a, b].

@[simp]
theorem interior_Ici' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (ha : (Set.Iio a).Nonempty) :
@[simp]
theorem interior_Iic' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (ha : (Set.Ioi a).Nonempty) :
@[simp]
theorem interior_Icc {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] [NoMaxOrder α] {a b : α} :
@[simp]
theorem Icc_mem_nhds_iff {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] [NoMaxOrder α] {a b x : α} :
@[simp]
theorem interior_Ico {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] {a b : α} :
@[simp]
theorem Ico_mem_nhds_iff {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] {a b x : α} :
@[simp]
theorem interior_Ioc {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMaxOrder α] {a b : α} :
@[simp]
theorem Ioc_mem_nhds_iff {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMaxOrder α] {a b x : α} :
theorem closure_interior_Icc {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (h : a b) :
@[simp]
theorem frontier_Ici' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (ha : (Set.Iio a).Nonempty) :
@[simp]
theorem frontier_Iic' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (ha : (Set.Ioi a).Nonempty) :
@[simp]
theorem frontier_Ioi' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (ha : (Set.Ioi a).Nonempty) :
@[simp]
theorem frontier_Iio' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (ha : (Set.Iio a).Nonempty) :
@[simp]
theorem frontier_Icc {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] [NoMaxOrder α] {a b : α} (h : a b) :
@[simp]
theorem frontier_Ioo {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (h : a < b) :
@[simp]
theorem frontier_Ico {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] {a b : α} (h : a < b) :
@[simp]
theorem frontier_Ioc {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMaxOrder α] {a b : α} (h : a < b) :
theorem nhdsWithin_Ioi_neBot' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (H₁ : (Set.Ioi a).Nonempty) (H₂ : a b) :
theorem nhdsWithin_Ioi_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMaxOrder α] {a b : α} (H : a b) :
theorem nhdsGT_neBot_of_exists_gt {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a : α} (H : ∃ (b : α), a < b) :
instance nhdsGT_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMaxOrder α] (a : α) :
theorem nhdsWithin_Iio_neBot' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {b c : α} (H₁ : (Set.Iio c).Nonempty) (H₂ : b c) :
theorem nhdsWithin_Iio_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] {a b : α} (H : a b) :
theorem nhdsLT_neBot_of_exists_lt {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {b : α} (H : ∃ (a : α), a < b) :
@[deprecated nhdsLT_neBot_of_exists_lt (since := "2026-01-16")]
theorem nhdsWithin_Iio_self_neBot' {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {b : α} (H : ∃ (a : α), a < b) :

Alias of nhdsLT_neBot_of_exists_lt.

instance nhdsLT_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [NoMinOrder α] (a : α) :
theorem right_nhdsWithin_Ico_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (H : a < b) :
theorem left_nhdsWithin_Ioc_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (H : a < b) :
theorem left_nhdsWithin_Ioo_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (H : a < b) :
theorem right_nhdsWithin_Ioo_neBot {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} (H : a < b) :

If the order topology for a dense linear ordering is discrete, the space has at most one point.

We would prefer for this to be an instance but even at (priority := 100) this was problematic so we have deferred this issue. TODO Promote this to an instance!

theorem Dense.exists_countable_dense_subset_no_bot_top {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [Nontrivial α] {s : Set α} [TopologicalSpace.SeparableSpace s] (hs : Dense s) :
ts, t.Countable Dense t (∀ (x : α), IsBot xxt) ∀ (x : α), IsTop xxt

Let s be a dense set in a nontrivial dense linear order α. If s is a separable space (e.g., if α has a second countable topology), then there exists a countable dense subset t ⊆ s such that t does not contain bottom/top elements of α.

theorem exists_countable_dense_no_bot_top (α : Type u_1) [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] [TopologicalSpace.SeparableSpace α] [Nontrivial α] :
∃ (s : Set α), s.Countable Dense s (∀ (x : α), IsBot xxs) ∀ (x : α), IsTop xxs

If α is a nontrivial separable dense linear order, then there exists a countable dense set s : Set α that contains neither top nor bottom elements of α. For a dense set containing both bot and top elements, see exists_countable_dense_bot_top.

@[simp]
theorem isClosed_Ico_iff {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} :

Set.Ico a b is only closed if it is empty.

@[simp]
theorem isClosed_Ioc_iff {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} :

Set.Ioc a b is only closed if it is empty.

@[simp]
theorem isClosed_Ioo_iff {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderTopology α] [DenselyOrdered α] {a b : α} :

Set.Ioo a b is only closed if it is empty.